Abstract
Energy efficiency is a major concern in modern high-performance-computing. Still, few studies provide a deep insight into the power consumption of scientific applications. Especially for algorithms running on hybrid platforms equipped with hardware accelerators, like graphics processors, a detailed energy analysis is essential to identify the most costly parts, and to evaluate possible improvement strategies. In this paper we analyze the computational and power performance of iterative linear solvers applied to sparse systems arising in several scientific applications. We also study the gains yield by dynamic voltage/frequency scaling (DVFS), and illustrate that this technique alone cannot to reduce the energy cost to a considerable amount for iterative linear solvers. We then apply techniques that set the (multi-core processor in the) host system to a low-consuming state for the time that the GPU is executing. Our experiments conclusively reveal how the combination of these two techniques deliver a notable reduction of energy consumption without a noticeable impact on computational performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.