Abstract

A bellows is a component in piping systems which absorbs mechanical deformation with flexibility. Its geometry is an axially symmetric shell which consists of two toroidal shells and one annular plate or conical shell. In order to analyze the bellows, this study presents the finite element analysis using a conical frustum shell element. A finite element analysis program is developed to analyze various bellows. The formula for calculating the natural frequency of bellows is made by the simple beam theory. The formula for fatigue life is also derived by experiments. A shape optimal design problem is formulated using multiple objective optimization. The multiple objective functions are transformed to a scalar function with weighting factors. The stiffness, strength, and specified stiffness are considered as the multiple objective function. The formulation has inequality constraints imposed on the natural frequencies, the fatigue limit, and the manufacturing conditions. Geometric parameters of bellows are the design variables. The recursive quadratic programming algorithm is utilized to solve the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.