Abstract

In high current, high voltage, high temperature power applications, commercially available conventional silicon thyristors are not suited because they present high leakage current. In this context, this paper presents a high-symmetrical (voltage) thyristor structure that presents a lower leakage current and higher breakover voltage as compared with the conventional thyristor at. It is shown through 2-D physical simulations that the replacement of the P-emitter of a standard symmetrical thyristor by a judicious association of P diffusions and Schottky contacts at the anode side contributes to the reduction of the leakage current in the forward blocking state at high temperature. A fine tune of the anode side configuration will improve the forward OFF-state behavior with only a negligible ON-state voltage drop degradation. Moreover, the comparison with the conventional anode short thyristor shows that the insertion of Schottky contacts leads to the same improvements in terms of OFF-state forward breakover voltage and leakage current and also presents a high reverse blocking voltage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.