Abstract
A novel compact 2-DOF compliant positioner is developed for the purpose of achieving good characteristics such as high natural frequency, high displacement amplification ratio, good linear motion, and compact structure based on its symmetrical structure. To be specific, the developed stage is proposed according to an advanced six-lever displacement amplifier arranged at an inclination angle of the rigid bar utilizing right circular hinges and a parallel guiding mechanism with integrated flexure leaf hinges to attain the above-mentioned characteristics and reduce the decoupling mobility error. First, to quickly assess the initial quality response, an integration method of kinetostatic analysis, the Lagrange method, and finite element analysis was applied to evaluate and verify the quality characteristic of the stage. The experimental result showed that the error between the analytical method and the FEA method was 1.3%, which was relatively small and reliable for quickly assessing the primary quality response of the proposed positioner. Next, to boost the important output characteristics of the developed positioner, the integration approach of the response surface method and NSGA-II algorithm was utilized to find the optimal design variables. Finally, a prototype was manufactured based on the CNC milling method to validate the experimental and FEA analysis results. The attained results show that the optimal results of safety factor and output displacement were 2.4025 and 248.9 µm. Moreover, the FEA verification results were 2.4989 and 242.16 µm, with errors for safety factor and output displacement between the optimal result and the FEA result of 3.86% and 2.78%, respectively. In addition, the simulation and experimental results of the first natural frequency were 371.83 Hz and 329.59 Hz, respectively, and the error between the FEA result and experimental result for the first natural frequency was 11.36%. Furthermore, the achieved results show that the relationship between input displacement and output displacement of the experimental result and the FEA result of the developed structure achieved a good linear connection. These results suggest that the proposed positioner will be a potential structure employed in precise positioning systems and nanoindentation testing positioning systems for checking bio-specimens’ behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.