Abstract

AbstractWithin this paper we have demonstrated the unique capability of scanning spreading resistance microscopy (SSRM) in order to evaluate and optimize the recent approaches towards the formation of advanced p-MOS devices. As shown in this paper, such an optimization requires a detailed 2D-analysis on completely processed devices as two-dimensional interactions may cause (unexpected) lateral diffusion and (de) activation of underlying profiles. Emphasis will be on junction formation using Ge- pre-amorphization and carbon based cocktail implantation coupled with activation based on solid phase epitaxial regrowth and/or millisecond laser anneal. In the case of a Ge-pre-amorphization implant followed by solid phase epitaxial regrowth, SSRM shows an obvious relationship between the presence of defects in the end of range region and halo implant de-activation. Based on the quantified 2D-profiles we can extract the lateral and vertical junction depths as well as the lateral and vertical abruptness of the extension region. A drastic reduction of the lateral diffusion for the cocktail implant versus the standard reference devices with classical spike annealing is eminent. At the same an important reduction of the lateral diffusion of the source/drain implants (HDD) under the spacer can be seen. The SSRM results also highlight the impact of different activation mechanisms on the channel implants (in particular on the shape of the halo pockets).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call