Abstract
A fine heavy rain forecast plays an important role in the accurate flood forecast, the urban rainstorm waterlogging and the secondary hydrological disaster preventions. To improve the heavy rain forecast skills, a hybrid Breeding Growing Mode (BGM)- three-dimensional variational (3DVAR) Data Assimilation (DA) scheme is designed on running the Advanced Research WRF (ARW WRF) model using the Advanced Microwave Sounder Unit A (AMSU-A) satellite radiance data. Results show that: the BGM ensemble prediction method can provide an effective background field and a flow dependent background error covariance for the BGM- 3DVAR scheme. The BGM-3DVAR scheme adds some effective mesoscale information with similar scales as the heavy rain clusters to the initial field in the heavy rain area, which improves the heavy rain forecast significantly, while the 3DVAR scheme adds information with relatively larger scales than the heavy rain clusters to the initial field outside of the heavy rain area, which does not help the heavy rain forecast improvement. Sensitive experiments demonstrate that the flow dependent background error covariance and the ensemble mean background field are both the key factors for adding effective mesoscale information to the heavy rain area, and they are both essential for improving the heavy rain forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.