Abstract

ABSTRACTYouTube currently accounts for a significant percentage of the Internet's global traffic. Hence, understanding the characteristics of the YouTube traffic generation pattern can provide a significant advantage in predicting user video quality and in enhancing network design. In this paper, we present a characterisation of the traffic generated by YouTube when accessed from a regular PC. On the basis of this characterisation, a YouTube server traffic generation model is proposed, which, for example, can be easily implemented in simulation tools. The derived characterisation and model are based on experimental evaluations of traffic generated by the application layer of YouTube servers. A YouTube server commences the download with an initial burst and later throttles down the generation rate. If the available bandwidth is reduced (e.g. in the presence of network congestion), the server behaves as if the data excess that cannot be transmitted because of the reduced bandwidth were accumulated at a server's buffer, which is later drained if the bandwidth availability is recovered. As we will show, the video clip encoding rate plays a relevant role in determining the traffic generation rate, and therefore, a cumulative density function for the most viewed video clips will be presented. The proposed traffic generation model was implemented in a YouTube emulation server, and the generated synthetic traffic traces were compared with downloads from the original YouTube server. The results show that the relative error between downloads from the emulation server and the original server does not exceed 6% for the 90% of the considered videos. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.