Abstract

We consider the problem of throughput modeling of wireless multihop packet CDMA networks with cellular overlay using simple forwarding strategies in the upstream. Considering the effect of shadowing and distance-dependent path loss, we approximate the probability density of interference at each base station (BS) and compare numerical and simulation results for different path-loss parameters. We derive the probability density of the received power at each BS due to transmission of one packet from a random node, as well as the probability distribution of the number of packets received at each node per time slot. Subsequently, we use the above results to approximate the probability density of the total received power at each BS based on calculations of moments. We observe that the probability density of intercell interference due to transmissions from terminals and routers may be approximated by normal and log-normal densities, respectively. We quantify the network performance based on throughput, total consumed power, and outage probability for different system parameters. For homogeneous link efficiencies, introducing routers into the network while reducing the transmission power increases the mean and variance of interference to the desired signal, hence higher outage probability. However, there are ample opportunities inherent to multihop structure, applicable to any of the physical, data link, and network layers, which help increase the overall achievable network throughput.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.