Abstract
The GLO-1 experiment measured the radiance of ambient atmospheric species and of meteoric metals, including Na, Mg, Mg + and Ca +, along lines of sight with tangent altitudes between 120–350 km. The results confirm earlier observations of a strong dawn/dusk asymmetry in thermospheric ion density and the concentration of ion density near the geomagnetic equator. The data also show a substantial amount of neutral Na in the thermosphere, with a dawn/dusk asymmetry similar to the ions. We observe the presence of Ca + and Mg + in the relative abundance comparable to the abundance ratio in meteoric material and in the sun. We are also able to simultaneously observe Mg and Mg + in a few cases, over a range of altitudes. We have developed a model in an attempt to better understand these features. The one–dimensional model realistically and comprehensively incorporates the deposition of cosmic dust, transport by the equatorial electric field and diffusion, and ion and neutral chemistry specific to the three metal species studied. The model is driven by a single source function for dust influx, so that it can be used to predict the relative amounts of one metal species to another. These features of the model allow for diurnal variations and variations in latitude, reproducing the observations reasonably well on average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.