Abstract

In this study the performance of a polymer electrolyte membrane (PEM) fuel cell stack is analyzed with a mathematical model when the stack operates on hydrocarbon reformate gas as the anode feed stream. It is shown that the effect of carbon dioxide dilution of the hydrogen dominated reformate gas has a minimal impact on the stack performance. However, the CO-poisoning effect due to the in situ reverse water gas shift reaction in the anode feed stream could have a very serious adverse impact on the stack performance, especially at high current densities. Thermodynamic calculations indicate that the equilibrium concentrations of CO could be as high as 100 ppm, generated by the in situ reverse water gas shift reaction, under the typical conditions of PEM fuel cell operation; and are influenced by the stack operating temperature and water content of the reformate anode feed. This CO-poisoning of the stack performance is shown mitigated effectively by introducing about 0.5–1% oxygen to the anode feed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.