Abstract

This paper describes the reviews of the recent works in analysis, modeling, and simulation of the motion of a non-spherical particle. The motion of the non-spherical particles was analyzed in detail by means of a fully resolved direct numerical simulation (DNS). From the DNS data, the PDF-based drag coefficient model was proposed and applied to the particle dispersion simulation in an isotropic turbulent flow to assess the effect of the particle shape by comparing it with the motion of a spherical particle. Moreover, the model was applied to a large-eddy simulation (LES) of particle dispersion in an axial jet flow and validated by comparing it with the experimental data. Results showed that the effect of the particle shape was clearly observed in the characteristics of the particle dispersion in the isotropic turbulent flow by evaluating the deviation from the Poisson distribution (D number) and the radial distribution function (RDF). It was found that the non-spherical particle’s representative Stokes number becomes larger as the sphericity increases. Furthermore, it was also revealed that the effects of the particle size distribution and the shape observed in the experiment was precisely captured by the LES that coincided with the trend found in the isotropic turbulent flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.