Abstract

Second-order accurate upwind and centered schemes are presented in a framework that facilitates their analysis and comparison. The upwind scheme employed consists of a reconstruction step (MUSCL approach) followed by an upwind step (Roe's flux-difference splitting). The two centered schemes are of Lax-Friedrichs (L-F) type. They are the nonstaggered versions of the Nessyahu-Tadmor (N-T) scheme and the CE/SE method with epilson = 1/2. The upwind scheme is extended to the case of two spatial dimensions (2D) in a straightforward manner. The N-T and CE/SE schemes are extended in a manner similar to the 2D extensions of the CE/SE scheme by Wang and Chang for a triangular mesh and by Zhang, Yu, and Chang for a quadrilateral mesh. The slope estimates, however, are simplified. Fourier stability and accuracy analyses are carried out for these schemes for the standard 1D and the 2D quadrilateral mesh cases. In the nonstandard case of a triangular mesh, the triangles must be paired up when analyzing the upwind and N-T schemes. An observation resulting in an extended N-T scheme which is faster and uses only one-third of the storage for flow data compared with the CE/SE method is presented. Numerical results are shown. Other improvements to the schemes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.