Abstract
A comprehensive analysis of the full-bridge constant-frequency LCC-type parallel resonant converter (LCC-PRC) is presented. Owing to operation under constant frequency, the filter designs are simplified and utilisation of magnetic components are improved. The LCC-PRC takes on the desirable characteristics of the pure series and the pure parallel converter, thus removing the main disadvantages. A useful analytic technique, based on classical AC complex analysis, is introduced for designing the LCC-PRC. By using a proper transformation on the state variable, the converter is analysed by means of a two-dimensional state-plane diagram, which shows that the converter possesses three operation modes (I, II, III). It is shown that operating the converter in mode II provides the desirable higher efficiency for a wide load range. A CPU (8031) is used to control the phase-shift time. Its control characteristic is very accurate and the cost is low. Finally, a constant-frequency controlled full-bridge LCC-type parallel resonant converter (LCC-PRC) using the CPU (8031) control is implemented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.