Abstract

PurposeIn this paper, a new general system consisted of l subsystems connected in series is introduced. Each subsystem connected in K-out-of-(n + m): G mixed standby configuration.Design/methodology/approachThe lifetime of the system's units is assumed to be exponentially distributed and there is elapsed repair time with general distribution. The switch in each subsystem is assumed to be imperfect with the failure process follows an exponential distribution. A genetic algorithm is applied to the system to obtain the optimal solution of the system and solve the redundancy allocation problem.FindingsAnalysis of availability, reliability, mean time to failure and steady-state availability of the system is introduced. The measures of the system are discussed in special two cases when the elapsed repair time follows gamma and exponential distribution. An optimization problem with bi-objective functions is introduced to minimize the cost of the system and maximize the reliability function. A numeric application is introduced to show the implementation and effectiveness of the system and redundancy allocation problem.Originality/valueA new general K-out-of-(n + m): G mixed standby model with elapsed repair time and imperfect switching is introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.