Abstract

We examine certain analytic and numerical aspects of optimal control problems for the stationary Navier-Stokes equations. The controls considered may be of either the distributed or Neumann type; the functionals minimized are either the viscous dissipation or the L4_distance of candidate flows to some desired flow. We show the existence of optimal solutions and justify the use of Lagrange multiplier techniques to derive a system of partial differential equations from which optimal solutions may be deduced. We study the regularity of solutions of this system. Then, we consider the approximation, by finite element methods, of solutions of the optimality system and derive optimal error estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.