Abstract
More and more wireless networks are deployed with overlapping coverage. Especially in the unlicensed bands, we see an increasing density of heterogeneous solutions, with very diverse technologies and application requirements. As a consequence, interference from heterogeneous sources-also called cross-technology interference-is a major problem causing an increase of packet error rate (PER) and decrease of quality of service (QoS), possibly leading to application failure. This issue is apparent, for example, when an IEEE 802.15.4 wireless sensor network coexists with an IEEE 802.11 wireless LAN, which is the focus of this work. One way to alleviate cross-technology interference is to avoid it in the frequency domain by selecting different channels. Different multichannel protocols suitable for frequency-domain interference avoidance have already been proposed in the literature. However, most of these protocols have only been investigated from the perspective of intratechnology interference. Within this work, we create an objective comparison of different candidate channel selection mechanisms based on a new multichannel protocol taxonomy using measurements in a real-life testbed. We assess different metrics for the most suitable mechanism using the same set of measurements as in the comparison study. Finally, we verify the operation of the best channel selection metric in a proof-of-concept implementation running on the testbed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.