Abstract
The satellite-borne data transmission antenna is the main disturbing source of low-frequency microvibration of spacecraft, which immensely affects the image quality of remote sensing satellite. In this paper, the dynamic characteristics of flexible load driven by stepping motor on flexible boundary are studied. The dynamic equation of the stepping motor driven by current subdivision is simplified by linearization method. The dynamic model of flexible load driven by stepping motors on flexible boundary is established by using the Dynamic Substructure Method, and the analytical expression of microvibration of the data transmission antenna is given. The coupling relationship between the stepping motors and the flexible structure is analyzed by modal coordinate transformation. The microvibration model is verified by simulation and experiment, and the main causes and coupling factors of microvibration are explained. The results show that the model can accurately predict the microvibration of the satellite antenna and can be applied to the microvibration prediction in orbit. The reasonable selection of the working velocity of the stepping motors can effectively reduce the microvibration, which provides the basis for the design of the antenna control system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.