Abstract
This study endeavors to elucidate the salient factors that influence the efficacy of roller-based robotic manipulators in grasping multi-layered flaky deformation objects in a planar configuration. Through a rigorous force analysis of the grasping process, it was ascertained that the manipulation of flaky deformation objects is influenced by four forces. Subsequent analysis of the genesis of these forces enabled the identification of four pivotal factors: the applied downward pressure, the location of grasp, the number of stacked layers, and the coefficient of friction. To gain a comprehensive understanding of how these factors dictate the grasping efficacy, a series of meticulously designed experiments was conducted. The findings reveal that augmenting the coefficient of friction between the roller and fabric, intensifying the downward pressure, increasing the number of stacked layers, and opting for a grasp location proximal to the edge significantly bolster the success rate of grasping. These revelations hold the potential to furnish theoretical guidance for optimizing the grasping strategies of roller-based robotic manipulators under practical operational conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.