Abstract
In this paper, the issue of output voltage regulation in buck type dc-dc converters is addressed using a current sensorless control technique. The proposed strategy integrates a finite time current observer with an adaptive backstepping control scheme to yield a cost-effective and robust control mechanism. The overall controller stability in the sense of Lyapunov is proved. Applicability of the proposed control is verified experimentally on a buck converter in the laboratory. The control scheme is implemented on dSPACE DS1103 platform based on DSP TM320F240 processor. To examine the efficacy of the proposed method, the buck converter is subjected to a wide change in input voltage, load resistance and reference voltage. For comparison purpose, a conventional adaptive backstepping control scheme is evaluated under identical conditions of experimental study to examine the merit of the proposed control. The results obtained reveal that the proposed control is prompt in rejecting perturbations and achieves a smooth, reliable and satisfactory output voltage regulation with faithful and time bound estimation of inductor current. Thereby, this investigation demonstrates the validity of the proposed control in maintaining a stringent output voltage regulation in buck converters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.