Abstract

Piezoelectric energy harvesting provides a means to harvest the ambient kinetic energy (e.g., vibrations and rotations) of structures for conversion into usable electricity. The technique can be employed to provide power sources for wireless sensors and low-power devices. Most energy harvesting devices developed to date operate most efficiently within a narrow bandwidth because they are resonance-frequency-based designs, although several tunable techniques have been proposed to broaden the efficient frequency range of energy harvesting. However, most efforts have focused on harvesting vibration energy rather than rotational energy. This paper presents the results of a comprehensive design analysis and experimental tests of a passive self-tuning piezoelectric composite cantilever beam for harvesting energy from rotational motion. The piezoelectric beam harvester is mounted on a rotating axis in the radial direction so that the tensile stress induced by the centrifugal force effectively stiffens the beam to passively tune the resonance frequency. A calculation procedure based on a finite element method is developed to analyze the self-frequency-tuning piezoelectric energy harvester, and the results are compared with those obtained from an analytic beam model. The design parameters for the self-tuning characteristics are identified and discussed. Experimental results verify the frequency-tuning energy harvesting behavior and show improved performances for the voltage and power outputs in the bandwidth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.