Abstract
The spindle is a key core component of a cotton picker, and its operating parameters directly affect the quality of cotton harvesting. In this study, the spindle was selected as the research object. The kinematics and mechanics analysis of the cotton-picking process was conducted, the dynamic motion trajectory of the spindle was obtained, and the working parameters affecting the picking performance of the spindle were determined. A test bench for spindle picking performance was built; the spindle speed and feed speed were used as test factors; the seed cotton rejection rate, picking time, and picking force were used as evaluation indices for spindle picking performance; and a full-factor test was conducted. The range, variance, and regression analyses were conducted on the test results, and the results showed that spindle speed and feed speed had significant effects on seed cotton rejection rate, picking force, and picking time (p < 0.01). The primary and secondary order of factors affecting seed cotton rejection rate and picking time were spindle speed and feed speed, and the primary and secondary order of factors affecting picking force were feed and spindle speed. By comprehensively analyzing the influence of factors on the evaluation indices, the best combination was obtained as the spindle speed and feed speed of 4000 r/min and 1.8 m/s, respectively. The research results have theoretical research value and practical significance for revealing the picking law of spindles when rotating at a high speed and then realizing efficient cotton harvesting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.