Abstract

A method based on ultra-high performance liquid chromatography with triple quadrupole/linear ion trap mass spectrometry(UHPLC-QTRAP-MS/MS) was developed for the simultaneous determination of 33 active constituents, including flavonoids, organic acids, nucleosides, and amino acids in Taxilli Herba to analyze and evaluate the dynamic accumulation of their multiple active constituents. The separation was performed at 30 ℃ on an XBridge~® C_(18) column(4.6 mm×100 mm, 3.5 μm) with gradient elution using 0.1% formic acid aqueous solution-methanol as the mobile phase at a flow rate of 0.5 mL·min~(-1), and the injection volume was 2 μL. The constituents were ionized in the electrospray ionization source(ESI) and quantitated by the multiple reaction monitoring(MRM) mode. The entropy weight TOPSIS method was used to objectively assign weights to the target constituents and rank them according to their relative closeness coefficient(C_i) to construct a multi-index comprehensive evaluation model of Taxilli Herba. The results showed that the concentrations and peak areas of 33 target constituents had good linearity in their respective linear ranges, and the correlation coefficients(r) were not less than 0.999 0. The RSD of precision, reproducibility, and stability were not higher than 4.7%. The average recoveries were 98.03%-101.3% with RSD less than 4.0%. There were differences in the content of 33 active constituents in Taxilli Herba at different harvest periods. The overall quality of Taxilli Herba harvested from mid-February to early March was better, which was consistent with the traditional harvest period. This study provides basic information for revealing the rule of dynamic accumulation of multiple active constituents in Taxilli Herba and determining the suitable harvesting period. Meanwhile, it also provides a new methodological reference for the comprehensive evaluation of the intrinsic quality of Taxilli Herba.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.