Abstract

Utilizing engine exhaust to provide energy for methanol steam reforming is a dependable approach for waste heat recovery and online hydrogen production. In this work, firstly, an online methanol reformer system based on waste heat recovery from a methanol-diesel dual direct injection engine is proposed, and a novel methanol reformer adapted to the engine is designed. Then, simulation models of the methanol reformer are developed, and a multi-physics coupled simulation is performed. The component transport model with three-step simplified reactions is used to simulate the methanol steam reforming, and the influence mechanism of key operational parameters on reforming performance is deeply revealed through quantitative and qualitative analyses. Furthermore, the dynamic evolution of gas components inside the methanol reformer under different operational parameters is disclosed through the visualization of simulation results. Finally, sensitivity analysis of key operational parameters is conducted through orthogonal experiment, and the quantification and ranking of the sensitivity is realized by using the range analysis method. The results indicate that, relative to the initial conditions, the hydrogen production rate and methanol conversion are improved by 60.35% and 27.28%, respectively. The findings of this study provide a valuable reference for designing and enhancing the performance of methanol reformer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call