Abstract

Traditionally, it was assumed that non-Saccharomyces (NS) yeasts could only survive in the early stages of alcoholic fermentations. However, recent studies applying culture-independent methods have shown that NS populations persist throughout the fermentation process. The aim of the present work was to analyze and quantify Saccharomyces cerevisiae (Sc) and Hanseniaspora guilliermondii (Hg) populations during alcoholic fermentations by plating and culture-independent methods, such as fluorescence in situ hybridization (FISH) and quantitative PCR (QPCR). Species-specific FISH probes labeled with fluorescein (FITC) were used to directly hybridize Sc and Hg cells from single and mixed cultures that were enumerated by epifluorescence microscopy and flow cytometry. Static and agitated fermentations were performed in synthetic grape juice and cell density as well as sugar consumption and ethanol production were determined throughout fermentations. Cell density values obtained by FISH and QPCR revealed the presence of high populations (107–108 cells/ml) of Sc and Hg throughout fermentations. Plate counts of both species did not show significant differences with culture-independent results in pure cultures. However, during mixed fermentations Hg lost its culturability after 4–6 days, while Sc remained culturable (about 108 cells/ml) throughout the entire fermentation (up to 10 days). The rRNA content of cells during mixed fermentations was also analyzed by flow cytometry in combination with FISH probes. The fluorescence intensity conferred by the species-specific FISH probes was considerably lower for Hg than for Sc. Moreover, the rRNA content of Hg cells, conversely to Sc cells, remained almost unchanged after boiling, which showed that rRNA stability is species-dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call