Abstract

Unmanned Aircraft (PTTA) or Unmanned Aerial Vehicle (UAV) is an aircraft that flies without a pilot and is controlled automatically. UAVs have a wide range of applications, including remote sensing, communication links, and natural disaster monitoring. One type of UAV being developed is LSU 05, using a composite of carbon fiber (CFRP) and glass fiber (GFRP) for its wing structure. This study aims to create a 3D model of the UAV VTOL wing, analyze the effect of material variations on the strength of the wing structure, and find the optimal wing design using the finite element analysis method. This study uses the SolidWorks 2021 software with maneuver conditions loading. The results of the analysis show that carbon fiber provides higher strength than fiberglass. In a fiberglass wing, the maximum stress is 229 MPa, while in a carbon fiber wing it is 197 MPa. The biggest displacement occurred in the fiberglass wing, which was 2.661 mm. The safety factor of the carbon fiber wing is 2.7, while that of the fiberglass is 1.9. This research provides an in-depth understanding of the behavior of VTOL UAV wing structures and contributes to the development of better wing designs. The optimized design can increase the performance, efficiency and reliability of VTOL UAV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.