Abstract

The tunable properties of nematic liquid crystals (NLC) are here exploited in a peculiar leaky waveguide with artificial magnetic conductors as the lateral walls, a bottom metal ground plane, and a homogenized metasurface on top to obtain dynamic beamsteering at a fixed terahertz frequency. The waveguide consists of an NLC cell sandwiched between two dielectric layers. The proposed antenna system works on its transverse-magnetic leaky mode and is capable of radiating a beam that scans either by frequency or by changing the bias voltage applied across the NLC cell. The design parameters are optimized through a rigorous modal analysis of the structure, and the radiation performance is validated through full-wave simulations. The results are promising for the realization of next-generation tunable terahertz leaky-wave antennas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call