Abstract
In this paper, a new analysis and design method for proportional-integrative-derivative (PID) tuning is proposed based on controller scaling analysis. Integral of time absolute error (ITAE) index is minimized for specified gain and phase margins (GPM) constraints, so that the transient performance and robustness are both satisfied. The requirements on gain and phase margins are ingeniously formulated by real part constraints (RPC) and imaginary part constraints (IPC). This set of new constraints is simply related with three parameters and decoupling of the remaining four unknowns, including three controller parameters and the gain margin, in the nonlinear and coupled characteristic equation simultaneously. The formulas of the optimal GPM-PID are derived based on controller scaling analysis. Finally, this method is applied to liquid level control of coke fractionation tower, which demonstrate that the proposed method provides better disturbance rejection and robust tracking performance than some commonly used PID tuning methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.