Abstract

A type of millimeter-wave antenna array with flexible design is proposed for a variety of applications at 60 GHz. The antenna array can be adjusted to be linearly or circularly polarized by simply changing the radiation part of the antenna array. High gain, wideband, and high radiation efficiency characteristics can be achieved by adopting a low insertion loss feeding network and broadband antenna elements. For the linearly polarized antenna array, simulation results show that the impedance bandwidth of the 2×2 antenna subarray reaches 21.6%, while the maximum gain achieves 15.1 dBi and has a fluctuation of less than 0.4 dBi within the working bandwidth. Simulation results of the 8×8 linearly polarized antenna array show a bandwidth of 21.6% and a gain of (26.1±1) dBi with an antenna efficiency of more than 80%. For the 8×8 circularly polarized antenna array, simulation results show that an impedance bandwidth of 18.2% and an axial ratio (AR) bandwidth of 13.3% are obtained. Gain and efficiency of up to 27.6 dBi and 80% are achieved, respectively. A prototype of antenna array is fabricated, and results are compared and analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call