Abstract

In the no-load condition, LLC converter usually fails to regulate its output voltage although it operates at a high switching frequency. Till now, it is hard to obtain the exact relationship between design parameters and the maximum switching frequency for no-load regulation capability. In this paper, a specific criterion for no-load regulation of LLC converter is provided, without using active components or other modulation schemes. By analyzing the macroscopic switching period and microscopic switching transition in the no-load condition, it is shown that not only the peaking resonant current during the switching transition, but also the resonant tank design affect the no-load regulation of the LLC converter, which affects the no-load regulation capability. Furthermore, the relationship among design parameters is analyzed and the design guideline is also provided to achieve no-load regulation at the specified maximum switching frequency. To verify the effectiveness of the proposed design, 400 V input and 50 V/200 W output prototype is built and tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.