Abstract
A series resonant converter modified by adding an inductor in parallel with the transformer primary (or secondary) is presented. This configuration is referred to as an LCL-type series resonant converter. A simplified steady-state analysis using complex AC circuit analysis is presented. Based on the analysis, a simple design procedure is given. Detailed experimental results obtained from a MOSFET-based 640 W converter are presented to verify the analysis. A narrow variation in switching frequency is required to regulate the output voltage for a very wide change in load, and the converter has load short-circuit capability. It is shown that by placing the parallel inductor on the secondary side, the parasitics of the high-frequency transformer can be used profitably. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.