Abstract

The analysis and design of an RF-input sequential load modulated balanced power amplifier (SLMBA) are presented in this article. Unlike the existing LMBAs, in this new configuration, an over-driven class-B amplifier is used as the carrier amplifier while the balanced PA pair is biased in class-C mode to serve as the peaking amplifier. It is illustrated that the sequential operation greatly extends the high-efficiency power range and enables the proposed SLMBA to achieve high back-off efficiency across a wide bandwidth. An RF-input SLMBA at 3.05–3.55-GHz band using commercial GaN transistors is designed and implemented to validate the proposed architecture. The fabricated SLMBA attains a measured 9.5–10.3-dB gain and 42.3–43.7-dBm saturated power. Drain efficiency of 50.9–64.9/46.8–60.7/43.2–51.4% is achieved at 6-/8-/10-dB output power back-off within the designed bandwidth. By changing the bias condition of the carrier device, higher than 49.1% drain efficiency can be obtained within the 12.8-dB output power range at 3.3 GHz. When driven by a 40-MHz orthogonal frequency-division multiplexing (OFDM) signal with 8-dB peak-to-average power ratio (PAPR), the proposed SLMBA achieves adjacent channel leakage ratio (ACLR) better than −25 dBc with an average efficiency of 63.2% without digital predistortion (DPD). When excited by a ten-carrier 200-MHz OFDM signal with 10-dB PAPR, the average efficiency can reach 48.2% and −43.9-dBc ACLR can be obtained after DPD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call