Abstract

A comprehensive study on analysis and design of fiber reinforced plastic (FRP) composite deck-and-stringer bridges is presented. The FRP decks considered consist of contiguous thin-walled box sections and are fabricated by bonding side-by-side pultruded thin-walled box beams, which are placed transversely over FRP composite stringers. In this study, we review the modeling and experimental verification of FRP structural beams, including micro/macro-mechanics predictions of ply and laminate properties, beam bending response, shear-lag effect, and local and global buckling behaviors. A simplified design analysis procedure for cellular FRP bridge decks is developed based on a first-order shear deformation macro-flexibility (SDMF) orthotropic plate solution. The present approach can allow the designers to analyze, design and optimize material architectures and shapes of FRP beams, as well as various bridge deck configurations, before their implementation in the field. Experimental studies of cellular FRP bridge decks are conducted to obtain stiffness coefficients, and an example of a cellular FRP deck on optimized winged-box FRP stringers under actual track-loading is presented to illustrate the analytical method. The experimental-analytical approach presented in this study is used to propose simplified engineering design equations for new and replacement highway FRP deck-and-stringer bridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.