Abstract

In this study, design theory and analysis for the class E power amplifier (PA), considering the metal oxide semiconductor field effect transistor (MOSFET) parasitic input and output capacitances, are proposed. The input resistance and capacitances cause non-ideal input voltage at gate terminal, which affect the specifications of the class E PA. In the proposed study, non-linear drain-to-source, linear gate-to-drain and linear gate-to-source MOSFET parasitic capacitances are considered, while zero voltage and zero derivative switching conditions are achieved. Moreover, the input resistance and the value of the input voltage are taken into account in the design theory. According to the obtained results, the duty cycle of the MOSFET depends on the MOSFET threshold voltage, input voltage, input series resistance, and some other parameters, which will be explained in this study. A design example is finally given to describe the design procedure at 1 MHz operating frequency along with the experimental result. The circuit simulation is also performed using PSpice software. The measured results showed quantitative agreements with simulation and theory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.