Abstract

The wireless power transfer (WPT) system has been extensively studied for its safety, convenience, and esthetics and has gradually been introduced into our life applications. In order to maintain battery performance, constant-current (CC) and constant-voltage (CV) charging outputs are generally regarded as the dominant charging modes. However, battery equivalent resistance changes significantly during the charging, so it is difficult to simultaneously achieve load-independent CC and CV charging outputs and zero phase angle (ZPA) condition. This article proposes a new LCCC/S topology and its corresponding parameter tuning method to obtain CC and CV charging modes at two different ZPA operating frequency points, respectively. In addition, it is worth mentioning that the receiver has only one compensation capacitor, which follows the principle that the receiver of the WPT system should remain compact and portable. Furthermore, a simple frequency modulation controller is designed to solve the problem of inaccuracies of the charging outputs due to parasitic losses of components and fluctuations of dc input voltage. Finally, a verification setup with 3-A output current in the CC mode and 48-V output voltage in the CV mode was built to validate the feasibility and rationality of the proposed LCCC/S-compensated WPT system and the corresponding control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.