Abstract

This work considers the problem of designing passive transition sections to provide impedance matching and mode conversion for acoustic wave propagation. The base configuration consists of two waveguides connected by a transition section. The objective is to find a placement of material inside this section to make it function as an impedance matcher or a mode converter with minimal losses. A finite element approximation of the Helmholtz equation in a truncated domain together with Dirichlet-to-Neumann type non-reflecting boundary conditions models the wave propagation. Material distribution techniques solve the resulting topology optimization problem and the resulting interfacial devices show good transmission properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call