Abstract
The addition of latent heat storage systems in solar thermal applications has several benefits including volume reduction in storage tanks and maintaining the temperature range of the thermal storage. A phase change material (PCM) provides high energy storage density at a constant temperature corresponding to its phase transition temperature. In this paper, a high temperature PCM (melting temperature of 80°C) made of a composite of paraffin and graphite was tested to determine its thermal properties. Tests were conducted with a differential scanning calorimeter and allowed the determination of the melting and solidification characteristics, latent heat, specific heat at melting and solidification, and thermal conductivity of the composite. The results of the study showed an increase in thermal conductivity by a factor of 4 when the mass fraction of the graphite in the composite was increased to 16.5%. The specific heat of the composite PCM (CPCM) decreased as the thermal conductivity increased, while the latent heat remained the same as the PCM component. In addition, the phase transition temperature was not influenced by the addition of expanded graphite. To explore the feasibility of the CPCM for practical applications, a numerical solution of the phase change transition of a small cylinder was derived. Finally, a numerical simulation and the experimental results for a known volume of CPCM indicated a reduction in solidification time by a factor of 6. The numerical analysis was further explored to indicate the optimum operating Biot number for maximum efficiency of the composite PCM thermal energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.