Abstract
An n-layer Scissor-Like Structured (SLS) vibration isolation platform is studied in this paper, focusing on the analysis and design of nonlinear stiffness, friction forces and damping characteristics for an advantageous vibration isolation performance. The system nonlinear stiffness and damping characteristics are theoretically investigated by considering the influence incurred by different structural parameters, friction forces and link inertia. Since stiffness and damping properties are both asymmetrical nonlinear functions, and Coulomb friction is piecewise nonlinear function, Perturbation Method (PM) and Average Method (AM) are applied together to achieve better solutions. The vibration isolation performance of the SLS platform is compared with known quasi-zero-stiffness vibration isolators in the literature, and a typical application case study as a vehicle seat suspension is also conducted, subjected to different load masses, and base excitations. The results show that much better vibration isolation performance and loading capacity can be easily achieved with the SLS platform by designing structural parameters, and the scissor-like structure provides a very powerful, practical and passive solution to design and realization of beneficial nonlinear stiffness and damping characteristics in vibration control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.