Abstract
Explicit time integration based CFD solvers suffer from restriction on the maximum allowable time step computed from the well known Courant-Friedrichs-Lewy (CFL) stability criterion. This restriction poses severe challenge in carrying out large eddy simulation (LES) of reactive and non-reactive flows, where the grid resolution is fine. The challenge of restricted time step is further augmented when dealing with large computational domains that pose a wide disparity in the system time scales. In this study, a numerical methodology is presented based on local time stepping in an overset grid framework. The attainable speedup is found to be a function of the ratio of time steps used in the sub-domains and the ratio of the number of computational degrees of freedom. The method is analyzed using global spectral analysis (GSA) and shows excellent agreement in solution accuracy with the conventional explicit time integration based solver. The impact of local time stepping on the order of accuracy and global conservation properties are also presented. This method is then applied to simulate three flow test cases to demonstrate the ability of the method to reproduce the first and second-order turbulent statistics at reduced computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.