Abstract

The authors explore control strategies in the design of a high-performance transport architecture for integrated services digital network (ISDN) frame-relay networks. For real-time congestion control, buffer management, priority queueing, adaptive windowing, and selective frame, discard policies are described that can effectively maximize network efficiency while preventing unfair usage of shared network resources. Virtual-circuit routing strategies are proposed that ensure an efficient distribution of traffic loads across the network despite variations in traffic patterns and topology changes. It is shown that source routing provides significant performance benefits over link-by-link routing, particularly in large networks that are not so densely connected. Routing table update and call acceptance mechanisms are described that provide for efficient bandwidth management in the network. Fault-tolerant strategies are described that include fast failure detection and local reroute. These strategies are capable of restoring affected virtual circuits in less than 10 s, which is adequate for session maintenance under most application scenarios.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.