Abstract

In this paper, the analysis and design of telerobotics based on the haptic virtual reality (VR) approach for simulating the clay cutting system is proposed. The main components of the approach include a user interface, networking, simulation, and a robot control scheme. The telerobotics for the clay cutting system and the environment is simulated by a haptic virtual system that enables operators to feel the actual force feedback from the virtual environment just as they would from the real environment. The haptic virtual system integrates the dynamics of the cutting tool and the virtual environment whereas the handle actuator consists of the dynamics of the handle and the operator on the physical side. The control scheme employs a dynamical controller which is designed considering both the force and position that the operator imposes on the handle and feedforward to the cutting tool, and the environmental force imposed on the cutting tool and the feedback to the handle. The stability robustness of the closed-loop system is analysed based on the Nyquist stability criterion. It is shown that the proposed control scheme guarantees global stability of the system, with the output of the cutting tool approaching that of the handle when the ratios of the position and the force are selected correctly. Experiments in the virtual environment on cutting a virtual clay system are used to validate the theoretical developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.