Abstract

This paper investigates an ultra-broadband sampling technique based on charge sampling using an Integrate-and-Hold Circuit (IHC) and ultra-short integration times. The charge sampling technique is mathematically analyzed in detail and compared to conventional switched-capacitor sampling. The mathematical analysis allows to predict the sampler bandwidth as well as the degradation of sampling precision due to analog circuit impairments such as integrator gain error, integration capacitor leakage, hold-mode droop, thermal noise, and clock jitter. Furthermore, design, simulation, and measurement results of an ultra-broadband charge sampler IC in SiGe BiCMOS technology are presented. The charge sampler IC achieves a 1dB bandwidth of 70 GHz. A resolution of better than 5.9 effective number of bits (ENOB) is measured from 0 to 70 GHz at a sampling rate of 5 GS/s. The results suggest that charge sampling using an IHC is a viable concept for ultra-broadband sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.