Abstract
The two major modes of retention of basic compounds in reversed-phase liquid chromatography on both octadecyl silane bonded silica-based (ODS) and polybutadiene coated zirconia (PBD-ZrO 2) materials are hydrophobic and ion-exchange (Coulombic) interactions. Although the influence of reversed-phase and Coulombic interactions on the chromatography of organic cations is qualitatively well recognized, the quantitative relationship between hydrophobic and ion-exchange interactions remains unclear. In this work, the retention mechanisms on both of the above types of phases were probed by studying the retention of a homologous series of p-alkylbenzylamines as a function of the ammonium concentration in the eluent. The various columns tested were studied in terms of plots of retention factor vs. the inverse of the displacing cation concentration. The analysis of such plots as well as plots of log k′ vs. number of methylene groups in the solutes and plots of log k′ vs. log[NH 4 +] clearly shows that at least two types of sites—a pure reversed-phase site and a “hydrophobically-assisted ion-exchange site” similar to the type of site described by Neue [J. Chromatogr. A 925 (2001) 49] are needed to explain the observations. In addition, we have found a quantitative measure of the relative amount of reversed-phase and ion-exchange interaction on a given solute has on a given stationary phase which allows unambiguous classification of columns. It is now clear that ion-exchange contributions to retention on PBD-ZrO 2, sometimes exceeding 90%, are even more important than previously thought and relative to hydrophobic interaction much more significant on PBD-ZrO 2 than on ODS type-B silicas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.