Abstract

For high electromagnetic performances, large space truss antennas should have reflector surface with an extremely high precision. Due to the varied load and some random disturbances, active control strategy is always used in the kind of structure for the precise surface. For the improvement of the electromagnetic performances, an electromechanical synthesis optimization model of space antenna structure systems is developed based on the antenna’s characteristics, which adopts the axial gain of truss antenna and power consumption of actuators as the objective functions, and structural material strength and actuator’s capability as constraint conditions. The application of model to an 8-m antenna structure demonstrates the potential for significant improvement. The analysis results indicate the benefit of including electrical performance in model for necessary effort for shape control of large space antenna reflectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.