Abstract

High speed motorized spindle plays an important role in high speed grinding. However, for high-speed machining, the spindle system usually generates excessive vibration due to the high speed and large mass. The vibration transfers to the bed of grinding machine and affects the precision of machining. To analyze and control the vibration generated by the spindle system, this paper develops a dynamic model for the high-speed spindle system, and further analyzes the eccentricity and the mass of the spindle system which affects the amplitude of the vibration of the bed by producing the impulse. Based on the result of analysis, the vibration is finally controlled by modifying the structure of the shaft. After optimization, the amplitude of the vibration of the bed of reduces significantly to 0.046um, which was 0.056um before. In addition the eccentricity of the spindle is decrease by 0.1um.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.