Abstract

This study analyzes the behavior of heterogeneous connected and autonomous vehicles (CAVs) and proposes the best vehicle sequence for optimal platoon throughput and platoon formation. A spring-mass-damper (SMD) system is adopted for control of CAVs, and the control parameters are formulated in relation to the physical capabilities of vehicles. To gain insight, we consider three types of vehicle: passenger cars, mini-vans, and heavy-duty vehicles. For each type, we investigate the maximum platoon throughput and the clustering time, defined as the time to reach the target equilibrium state. We further investigate different sequences of vehicle types in a platoon to identify the optimal vehicle order that maximizes the throughput and minimizes clustering time. Findings suggest that the highest performance vehicle (in relation to acceleration capability) should be placed as the leader of a platoon and that the number of passenger cars behind heavy vehicles (e.g., semi-trailers) should be minimized in the platoon. In addition, we examine how the proportions of lower performance vehicles affect throughput and clustering times. The result suggests that the higher the proportions, the lower the throughput and the longer the clustering time. The lowest performance vehicle had the greatest effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.