Abstract

A semi-high-speed magnetic levitation (maglev) train with a maximum speed of 200 km/h is being developed in Korea. It utilizes linear induction motors for propulsion and adopts electromagnetic suspension for levitation. For high-speed operation, guidance systems should be adopted to stabilize the train especially on curved tracks. For compatibility of the rail with previously developed urban maglev trains, the installation of the guidance electromagnet has to be restricted to be placed near the levitation electromagnet. Owing to the spatial closeness, mutual magnetic flux by the levitation and guidance electromagnets is produced at an overlapping portion of the rail. For stable control of the two systems, the coupling effects must be analyzed, because the levitation and guidance electromagnets are not operated independently. This paper aims to analyze the coupling effects by considering the magnetic field and a magnetic equivalent circuit. This paper suggests levitation and guidance systems for the semi-high-speed maglev train by considering each electromagnetic characteristic depending on the current direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.