Abstract

In this paper, we investigate the problem of how beliefs diffuse among members of social networks. We propose an information flow model (IFM) of belief that captures how interactions among members affect the diffusion and eventual convergence of a belief. The IFM model includes a generalized Markov Graph (GMG) model as a social network model, which reveals that the diffusion of beliefs depends heavily on two characteristics of the social network characteristics, namely degree centralities and clustering coefficients. We apply the IFM to both converged belief estimation and belief control strategy optimization. The model is compared with an IFM including the Barabasi-Albert model, and is evaluated via experiments with published real social network data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.