Abstract
This paper intends to find out target genes about memory and learning via microarray analysis. Microarrays are often used to store and manage large amounts of data; however, there is no consensus as to how to best analyze microarray data. This paper uses computational algorithms to analyze gene samples from mice with various calcium channel phenotypes. Min-max normalization was used first to normalize the data. Then, analysis of variance was applied to detect genetic differences among the genes. Finally, Pearson correlation coefficients were calculated to identify the regulatory network of the genes. This analysis model can be applied to efficiently analyze complicated gene expression data. It can also be used to examine the biological functions and regulations of target genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.