Abstract
The paper aims to analyze and compare various deep learning (DL) algorithms in order to develop a Suspicious Activity Recognition (SAR) system for closed-circuit television (CCTV) surveillance. Automated systems for detecting and classifying suspicious activities are crucial as technology’s role in safety and security expands. This paper addresses these challenges by creating a robust SAR system using machine learning techniques. It analyzes and compares evaluation metrics such as Precision, Recall, F1 Score, and Accuracy using various deep learning methods (convolutional neural network (CNN), Long short-term memory (LSTM) – Visual Geometry Group 16 (VGG16), LSTM – ResNet50, LSTM – EfficientNetB0, LSTM – InceptionNetV3, LSTM – DenseNet121, and Long-term Recurrent Convolutional Network (LRCN)). The proposed system improves threat identification, vandalism deterrence, fight prevention, and video surveillance. It aids emergency response by accurately classifying suspicious activities from CCTV footage, reducing reliance on human security personnel and addressing limitations in manual monitoring. The objectives of the paper include analyzing existing works, extracting features from CCTV videos, training robust deep learning models, evaluating algorithms, and improving accuracy. The conclusion highlights the superior performance of the LSTM-DenseNet121 algorithm, achieving an overall accuracy of 91.17% in detecting suspicious activities. This enhances security monitoring capabilities and reduces response time. Limitations of the system include subjectivity, contextual understanding, occlusion, false alarms, and privacy concerns. Future improvements involve real-time object tracking, collaboration with law enforcement agencies, and performance optimization. Ongoing research is necessary to overcome limitations and enhance the effectiveness of CCTV surveillance.
Full Text
Topics from this Paper
Closed-circuit Television Surveillance
Long Short-term Memory
Visual Geometry Group 16
Closed-circuit Television
Suspicious Activities
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Injury Prevention
Dec 23, 2003
European Journal on Criminal Policy and Research
Sep 2, 2022
Campbell Systematic Reviews
Jan 1, 2008
Molecular Therapy - Nucleic Acids
Jun 1, 2021
Sensors
Apr 18, 2021
Aug 26, 2018
International Journal of Comparative and Applied Criminal Justice
Jan 2, 2022
Journal of Hydrology
Aug 1, 2023
Journal of Neuroscience Methods
Nov 1, 2019
Cognition, Technology & Work
Oct 5, 2014
iScience
Dec 1, 2022
Jan 1, 2021
IEEE Access
Jan 1, 2020
Jan 1, 2015
Canadian Journal of Communication
Sep 19, 2009
Intelligent Decision Technologies
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023
Intelligent Decision Technologies
Nov 20, 2023