Abstract
Aim: prediction of coronary disease using novel support vector machine and comparing its accuracy with logistic regression algorithm. Materials and methods: Two social affairs are proposed for predicting the accuracy (%) of coronary disease. To be explicit, the novel supports vector machine and logistic regression algorithms. Here we take 20 samples each for appraisal and compare. The sample size was calculated using G power with pretest power at 80% and the alpha of 0.05 value. Result: The logistic regression gives better precision (87.82%) than the novel support vector machine (SVM) accuracy (81.30%). Thus the real significance of logistic regression is better than novel support vector machine algorithms. Conclusion: From the result, it might be gathered that logistic regression helps in expecting the coronary sickness with more accuracy to appear differently in relation to novel support vector machine algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.